

Accelerated Adhesive Curing for Induction-Based Repair of Composites

by Steven H. McKnight, Bruce K. Fink, Sean Wells, Shridhar Yarlagadda, and John W. Gillespie Jr.

ARL-TR-2103 October 1999

Approved for public release; distribution is unlimited.

20000118 061

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-2103

October 1999

Accelerated Adhesive Curing for Induction-Based Repair of Composites

Steven H. McKnight and Bruce K. Fink Weapons and Materials Research Directorate, ARL

Sean Wells, Shridhar Yarlagadda, and John W. Gillespie Jr. University of Delaware

Approved for public release; distribution is unlimited.

Abstract

A methodology for accelerated curing of commercially available room-temperature curing paste adhesives is outlined. Cure kinetics of the adhesive were studied by thermochemical analysis, and degree of cure was related to processing parameters and cure cycles. Increasing the cure temperature to 100°C reduced the cure time from 16 hr to approximately 15 min for 98% cure. Induction-heating techniques were used to demonstrate rapid heating of adhesives at the bondline for lap shear specimens.

Acknowledgments

Sean Wells is an Undergraduate Research Assistant at the University of Delaware's Center for Composite Materials (UD-CCM) in Newark, Delaware. Dr. Shridhar Yarlagadda is a Research Associate at UD-CCM and Dr. John Gillespie is a professor in the Material Science Program at UD and is Technical Director of UD-CCM. This research was funded by the U.S. Army Research Laboratory (ARL) through the Composite Materials Research cooperative agreement with UD-CCM.

Table of Contents

		Page
	Acknowledgments	iii
	List of Figures	vii
	List of Tables	ix
1.	Introduction	1
2.	Thermochemical Analysis	2
3.	Induction Heating	8
4.	Conclusions	9
5.	References	11
	Distribution List	13
٠	Report Documentation Page	23

List of Figures

<u>Figure</u>		Page
1.	DSC Heat Flow for Isothermal Cure at 110°C and the Associated Degree of Conversion With Time	4
2.	Degree of Conversion Versus Time for Increasing Isothermal Cure Temperature	5
3.	Plot of dα/dt Versus α for a Typical Isotherm With Associated Fit	6
4.	Arrhenius Relationship for the Parameter k ₂ Used in the Kinetic Model	7
5.	Model Predictions for Cure Time Compared to the Experimentally Observed Cure Times	7
6.	Typical Temperature Profiles for Induction Heated Adhesive Joints $T_{max} = 150^{\circ}C$ (Dotted Line) and 205°C (Solid Line)	8
7.	Typical Measured Temperature Profile at Bondline at Steady State by Infrared Thermometry	9

List of Tables

<u>Table</u>		Page
1.	Kinetic Model Parameters	6

1. Introduction

The motivation for this work arises from the expanding use and complexity of design of composites in military vehicles and, with that, the increasing need for field expedient and depot-level repair procedures for these components.

A critical issue in adhesive-based repair of composites is the application of sufficient heat and pressure at the bondline. It is highly desirable that thermal generation be localized at the bondline and be evenly distributed (taking into account thermal conductive losses). One method of rapidly applying localized heating at the bondline is induction heating [1].

Electromagnetic induction heating techniques are well known and widely used for metals and Recently, significant research has been undertaken to adapt induction heating to composites for benefits such as cost and reduced processing times. One of the heating techniques uses hysteresis losses in ferromagnetic particles subjected to high-frequency magnetic fields as the heat-generation mechanism. Another generates heat through joule losses caused by the formation of eddy currents through Faraday's Law. Both of these heating techniques can be applied to the repair of composites through the use of a susceptor material placed at the bondline or through the susceptorless heating of carbon-fiber-based systems [2, 3]. Susceptor layers are used to promote localized uniform heating to produce desired process temperatures in the When susceptors are used, the remotely located induction coil transfers bondline. electromagnetic energy to the susceptor, which in turn, generates thermal energy in the plane of the bondline. These techniques allow rapid heating of the susceptor material and, through thermal conduction, rapid heating of the adjacent adhesive. These methods have traditionally been plagued by nonuniformity of heating in the plane of the bondline. Several techniques have recently been developed [3, 4] that enable uniform heating of the susceptor in the plane of the bondline.

Appropriate process windows are needed for each adhesive system to be used. In this study, eddy-current-based susceptors are formed from electrically conductive meshes and an

epoxy-based adhesive. Room-temperature curing adhesives that are often used in the repair of composites require from days to weeks to achieve full cure. This work establishes a methodology for relating cure cycles to degree of cure predictions for accelerated curing of adhesives for repair. Furthermore, the induction heating is used to accelerate the cure of a room-temperature curing epoxy adhesive placed at composite-to-composite bondline.

2. Thermochemical Analysis

In order to maximize the benefits of accelerated cure of adhesives using induction heating, a process window must be established for the adhesives of interest. The process window would then be used to optimize the bonding process in terms of time and temperature. Issues that dictate the process window include cure kinetics, evolution of exotherms, flow and wetting, and thermally induced residual stresses. Adhesive cure is the most dominant of these issues and must be addressed to determine cure time as a function of temperature, as well as ultimate degree of cure. In this study, we have chosen a typical room-temperature curing epoxy for evaluation of accelerated cure properties.

Differential scanning calorimetry (DSC) has been widely used to characterize the cure kinetics of thermosetting polymers including polyesters [5], epoxies [6], vinyl esters, and bismaleimides. Since the heat evolution dQ/dt measured by the DSC results from the chemical cross-linking reaction, it is possible to relate the heat evolution (dQ/dt) to the rate of reaction $(d\alpha/dt)$ and the conversion (α) . This can be accomplished by using the following relationships:

$$\frac{\mathrm{d}\alpha}{\mathrm{d}t} = \frac{1}{\Delta H_{\text{tot}}} \left(\frac{\mathrm{d}Q}{\mathrm{d}t}\right)_{t},\tag{1}$$

$$\frac{d\alpha}{dt} = \frac{1}{\Delta H_{tot}} \int_{t}^{t} \left(\frac{dQ}{dt}\right) dt , \qquad (2)$$

where ΔH_{tot} is the total heat of reaction, generally determined by averaging the reaction exotherms measured from several dynamic-temperature DSC runs. Various chemical kinetic models can then be fit using data that are obtained from isothermal DSC experiments.

The mechanistic models of thermoset cure that usually provide a more accurate representation of cross-linking reactions are not generally applicable to complex systems such as formulated adhesives. Since the goal of this work is to provide a process window for accelerated cure, the specific cure mechanisms need not be critically assessed. Alternatively, there are several empirical models that have been successfully used to predict to cure of thermosetting polymers. One popular model was proposed by Kamal and Sourour [7]. Their model (equation [3]) has found widespread acceptance for a number of cross-linking reactions (including epoxies) and will be used to fit the adhesive studied here.

$$\frac{d\alpha}{dt} = (k_1 + k_2 \alpha^m)(\alpha_u - \alpha)^n$$
(3)

In this expression, α is the degree of conversion, α_u is the temperature-dependent maximum conversion, k_1 and k_2 are Arrhenius-type rate constants, and m and n are constants usually assumed to sum to 2 but often allowed to vary freely. The α_u term arises from the fact that the entire heat of reaction is not released during isothermal cure due to the decreased mobility of the polymer chains as cross-linking occurs. By performing a series of isothermal cures, values for the model parameters can be determined and used to predict the cure kinetics of the adhesive.

The material studied here was a two-part epoxy room-temperature-curing paste adhesive from Ciba. It was selected because of our prior experience with the system for composite and metal bonding. Additionally, the manufacturers suggest a 16-hr cure time at room temperature, making it an ideal candidate for accelerated cure studies.

Several (10) dynamic DSC runs were performed to evaluate ΔH_{tot} and the glass transition temperature (T_g) of the cured material. Resin and hardener were mixed one to one by weight and

immediately inserted into the DSC (TA Instruments 2908), where they were heated at 10° C/min to 200°C. The resulting cure exotherm was integrated to evaluate the heat of reaction. A second heat of each sample was performed in order to measure the T_g of the cured material. The average and standard deviation of ΔH_{tot} was 190.5 ± 10.2 J/g and T_g was $102 \pm 14^{\circ}$ C. This value of ΔH_{tot} is used in equations (1) and (2) to relate the isothermal heat data to α and $d\alpha/dt$.

Next, isothermal scans were performed at temperatures ranging from 40°C to 150°C. Samples were mixed and placed in the preheated DSC cell. Data were collected until the heat flow returned to the baseline value. The isothermal heat flow was related to α and dα/dt using equations (1) and (2). A typical DSC isotherm and the resulting conversion vs. time are shown in Figure 1. Figure 2 shows the general trend of increased conversion and rate of reaction with increasing cure temperature.

Figure 1. DSC Heat Flow for Isothermal Cure at 110°C and the Associated Degree of Conversion With Time.

Figure 2. Degree of Conversion Versus Time for Increasing Isothermal Cure Temperature.

Equation (3) was then used to fit the dα/dt versus α curves for each isotherm. A value of α_u was determined from the asymptotic conversion from each test, and m and n were permitted to vary freely. Figure 3 shows typical data and the associated fit. Analysis of each experiment produces values for all of the kinetic parameters at that specific temperature. The temperature dependence of α_u was found to be linear and is shown in Table 1. The Arrhenius parameters for k_2 were evaluated as shown in Figure 4 (analysis of the data indicated that $k_1 \approx 0$ regardless of temperature and was subsequently neglected). A summary of all of the parameters is listed in Table 1.

The use of the model will enable prediction of the entire curing process over a wide range of processing temperatures. Initially, however, the prediction of cure time at a specific temperature is of greatest interest to applying induction techniques to accelerate adhesive cure. Here, cure time is defined as the amount of time necessary to reach 98% of α_u for each temperature.

Table 1. Kinetic Model Parameters

Parameter	Value
m	0.28 ± 0.03
n	1.67 ± 0.32
k ₂ (T)	$9.8 \times 10^6 \exp(-6306/T \text{ [K]})$ (1/min)
α _u (T)	$0.62 + 1.3 \times 10^{-3} \text{ T (°C)}$ (40 < T < 150°C)

Figure 3. Plot of d α /dt Versus α for a Typical Isotherm With Associated Fit.

Figure 5 shows model predictions for cure time compared to the experimentally observed cure times. While the agreement is not perfect, it does permit an estimate of minimum cure time at each temperature. These values will be used to determine process windows for the induction assisted accelerated cure of this adhesive.

Figure 4. Arrhenius Relationship for the Parameter k2 Used in the Kinetic Model.

Figure 5. Model Predictions for Cure Time Compared to Experimentally Observed Cure Times.

3. Induction Heating

Appropriate cure times for this adhesive can now be selected for any process temperature. This approach was used to select cure cycles for induction heating of the composite adhesive joints. Cure cycles chosen ranged from heating to 90–190°C under vacuum consolidation. Single lap shear specimens were fabricated by induction heating using a stainless steel mesh as the susceptor. An "earmuff" type induction coil was used and it carried currents between 25–40 Amps at a frequency of 284 kHz. Typical temperature profiles during induction heating of lap shear specimens are shown in Figures 6 and 7.

Figure 6. Typical Temperature Profiles for Induction Heated Adhesive Joints. $T_{max} = 150$ °C (Dotted Line) and 205°C (Solid Line).

For baseline comparisons, lap shear specimens were fabricated under oven cure conditions with vacuum consolidation. Lap shear tests showed comparable bond strengths between induction-fabricated specimens and oven-cured specimens.

Figure 7. Typical Measured Temperature Profile at Bondline at Steady State by Infrared Thermometry.

4. Conclusions

This report has described a methodology that can be used to accelerate the cure of room-temperature curing adhesives for rapid repair. Cross-linking reaction kinetics were developed and employed to determine cure cycles for a commercially available epoxy paste adhesive. This paste adhesive was combined with a metal screen to form a susceptor layer for bonding composite adherends. Induction techniques were used to rapidly heat the interface and cure the adhesive. Adhesive taken from the bondline demonstrated full cure at times determined from the kinetic models.

5. References

- 1. Bourbon, P. E., E. Karamuk, R. C. Don, and J. W. Gillespie, Jr. "Induction Heating for Rehabilitation of Steel Structures Using Composites." *Proceedings of the ASCE Materials Engineering Conference, New Materials and Methods for Repair*, San Diego, CA, 1994.
- 2. Fink, B. K., R. L. McCullough, and J. W. Gillespie, Jr. "Experiment Verification of Models for Induction Heating of Continuous-Carbon-Fiber Composites." *Polymer Composites*, vol. 17, no. 2, pp. 198–209, 1996.
- 3. Fink, B. K., and J. W. Gillespie, Jr. Composite Tech Brief No. 108 ver. 97A. University of Delaware, 1997.
- 4. Yarlagadda, S., B. K. Fink, and J. W. Gillespie, Jr. Journal of Thermoplastic Composite Materials. Vol. 11, no. 4, pp. 321-337, July 1998.
- 5. Lee, D., and C. D. Han. Polymer Engineering and Science. Vol. 34, no. 9, pp. 742-794, 1994.
- 6. Kenny, J. M., A. Apicella, and L. Nicolais. *Polymer Engineering and Science*. Vol. 29, no. 15, pp. 973–983, 1989.
- 7. Kamal, M. R., and S. Sourour. "Kinetics and Thermal Characterization of Thermoset Cure." *Polymer Engineering and Science*, vol. 13, no. 1, pp. 59-64, 1973.

- 2 DEFENSE TECHNICAL INFORMATION CENTER DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 HQDA
 DAMO FDQ
 D SCHMIDT
 400 ARMY PENTAGON
 WASHINGTON DC 20310-0460
- OSD
 OUSD(A&T)/ODDDR&E(R)
 R J TREW
 THE PENTAGON
 WASHINGTON DC 20301-7100
- 1 DPTY CG FOR RDA
 US ARMY MATERIEL CMD
 AMCRDA
 5001 EISENHOWER AVE
 ALEXANDRIA VA 22333-0001
- 1 INST FOR ADVNCD TCHNLGY THE UNIV OF TEXAS AT AUSTIN PO BOX 202797 AUSTIN TX 78720-2797
- 1 DARPA
 B KASPAR
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714
- 1 NAVAL SURFACE WARFARE CTR CODE B07 J PENNELLA 17320 DAHLGREN RD BLDG 1470 RM 1101 DAHLGREN VA 22448-5100
- 1 US MILITARY ACADEMY
 MATH SCI CTR OF EXCELLENCE
 DEPT OF MATHEMATICAL SCI
 MADN MATH
 THAYER HALL
 WEST POINT NY 10996-1786

NO. OF COPIES ORGANIZATION

- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL DD
 J J ROCCHIO
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CS AS (RECORDS MGMT)
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRL CI LL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

4 DIR USARL AMSRL CI LP (BLDG 305)

- 1 DIRECTOR
 USARL
 AMSRL CP CA D SNIDER
 2800 POWDER MILL RD
 ADELPHI MD 20783
- 1 COMMANDER
 USA ARDEC
 AMSTA AR FSE T GORA
 PICATINNY ARSENAL NJ
 07806-5000
- 3 COMMANDER
 USA ARDEC
 AMSTA AR TD
 PICATINNY ARSENAL NJ
 07806-5000
- 5 COMMANDER
 USA TACOM
 AMSTA JSK
 S GOODMAN
 J FLORENCE
 AMSTA TR D
 B RAJU
 L HINOJOSA
 D OSTBERG
 WARREN MI 48397-5000
- 5 PM SADARM
 SFAE GCSS SD
 COL B ELLIS
 M DEVINE
 W DEMASSI
 J PRITCHARD
 S HROWNAK
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 USA ARDEC
 F MCLAUGHLIN
 PICATINNY ARSENAL NJ
 07806-5000

- 5 COMMANDER
 USA ARDEC
 AMSTA AR CCH
 S MUSALLI
 R CARR
 M LUCIANO
 T LOUCEIRO
 PICATINNY ARSENAL NJ
 07806-5000
 - 4 COMMANDER
 USA ARDEC
 AMSTA AR (2 CPS)
 E FENNELL (2 CPS)
 PICATINNY ARSENAL NJ
 07806-5000
 - 1 COMMANDER
 USA ARDEC
 AMSTA AR CCH P J LUTZ
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 USA ARDEC
 AMSTA AR FSF T C LIVECCHIA
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 USA ARDEC
 AMSTA AR QAC T/C C PATEL
 PICATINNY ARSENAL NJ
 07806-5000
- 2 COMMANDER
 USA ARDEC
 AMSTA AR M
 D DEMELLA
 F DIORIO
 PICATINNY ARSENAL NJ
 07806-5000

- 3 COMMANDER
 USA ARDEC
 AMSTA AR FSA
 A WARNASH
 B MACHAK
 M CHIEFA
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 SMCWV QAE Q
 B VANINA
 BLDG 44 WATERVLIET ARSENAL
 WATERVLIET NY 12189-4050
- 1 COMMANDER
 SMCWV SPM
 T MCCLOSKEY
 BLDG 253 WATERVLIET ARSENAL
 WATERVLIET NY 12189-4050
- 8 DIRECTORECTOR
 BENET LABORATORIES
 AMSTA AR CCB
 J KEANE
 J BATTAGLIA
 J VASILAKIS
 G FFIAR
 V MONTVORI
 G DANDREA
 R HASENBEIN
 AMSTA AR CCB R
 S SOPOK
 WATERVLIET NY 12189-4050
- 1 COMMANDER SMCWV QA QS K INSCO WATERVLIET NY 12189-4050
- 1 COMMANDER
 PRODUCTION BASE MODERN
 ACTY
 USA ARDEC
 AMSMC PBM K
 PICATINNY ARSENAL NJ
 07806-5000

- 1 COMMANDER
 USA BELVOIR RD&E CTR
 STRBE JBC
 FT BELVOIR VA 22060-5606
- 2 COMMANDER
 USA ARDEC
 AMSTA AR FSB G
 M SCHIKSNIS
 D CARLUCCI
 PICATINNY ARSENAL NJ
 07806-5000
- 1 US ARMY COLD REGIONS
 RESEARCH & ENGINEERING CTR
 P DUTTA
 72 LYME RD
 HANVOVER NH 03755
- 1 DIRECTOR
 USARL
 AMSRL WT L D WOODBURY
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 COMMANDER
 USA MICOM
 AMSMI RD W MCCORKLE
 REDSTONE ARSENAL AL
 35898-5247
- 1 COMMANDER
 USA MICOM
 AMSMI RD ST P DOYLE
 REDSTONE ARSENAL AL
 35898-5247
- 1 COMMANDER
 USA MICOM
 AMSMI RD ST CN T VANDIVER
 REDSTONE ARSENAL AL
 35898-5247
- 2 US ARMY RESEARCH OFFICE A CROWSON K LOGAN PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211

- 3 US ARMY RESEARCH OFFICE ENGINEERING SCIENCES DIV R SINGLETON G ANDERSON K IYER PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211
- 5 PM TMAS
 SFAE GSSC TMA
 COL PAWLICKI
 K KIMKER
 E KOPACZ
 R ROESER
 B DORCY
 PICATINNY ARSENAL NJ
 07806-5000
- 1 PM TMAS
 SFAE GSSC TMA SMD
 R KOWALSKI
 PICATINNY ARSENAL NJ
 07806-5000
- 3 PEO FIELD ARTILLERY SYSTEMS
 SFAE FAS PM
 H GOLDMAN
 T MCWILLIAMS
 T LINDSAY
 PICATINNY ARSENAL NJ
 07806-5000
- 2 PM CRUSADER
 G DELCOCO
 J SHIELDS
 PICATINNY ARSENAL NJ
 07806-5000
- 3 NASA LANGLEY RESEARCH CTR
 MS 266
 AMSRL VS
 W ELBER
 F BARTLETT JR
 C DAVILA
 HAMPTON VA 23681-0001

- 2 COMMANDER
 DARPA
 S WAX
 2701 N FAIRFAX DR
 ARLINGTON VA 22203-1714
 - 6 COMMANDER
 WRIGHT PATTERSON AFB
 WL FIV
 A MAYER
 WL MLBM
 S DONALDSON
 T BENSON-TOLLE
 C BROWNING
 J MCCOY
 F ABRAMS
 2941 P ST STE 1
 DAYTON OH 45433
 - 2 NAVAL SURFACE WARFARE CTR DAHLGREN DIV CODE G06 R HUBBARD CODE G 33 C DAHLGREN VA 22448
 - 1 NAVAL RESEARCH LAB I WOLOCK CODE 6383 WASHINGTON DC 20375-5000
 - 1 OFFICE OF NAVAL RESEARCH MECH DIV Y RAJAPAKSE CODE 1132SM ARLINGTON VA 22271
 - 1 NAVAL SURFACE WARFARE CTR CRANE DIV M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245
 - 1 DAVID TAYLOR RESEARCH CTR SHIP STRUCTURES & PROTECTION DEPT J CORRADO CODE 1702 BETHESDA MD 20084
 - 2 DAVID TAYLOR RESEARCH CTR R ROCKWELL W PHYILLAIER BETHESDA MD 20054-5000

- 1 DEFENSE NUCLEAR AGENCY INNOVATIVE CONCEPTS DIV R ROHR 6801 TELEGRAPH RD ALEXANDRIA VA 22310-3398
- 1 EXPEDITIONARY WARFARE DIV N85 F SHOUP 2000 NAVY PENTAGON WASHINGTON DC 20350-2000
- OFFICE OF NAVAL RESEARCH
 D SIEGEL 351
 800 N QUINCY ST
 ARLINGTON VA 22217-5660
- 7 NAVAL SURFACE WARFARE CTR
 J H FRANCIS CODE G30
 D WILSON CODE G32
 R D COOPER CODE G32
 E ROWE CODE G33
 T DURAN CODE G33
 L DE SIMONE CODE G33
 DAHLGREN VA 22448
- 1 COMMANDER
 NAVAL SEA SYSTEM CMD
 P LIESE
 2351 JEFFERSON DAVIS HIGHWAY
 ARLINGTON VA 22242-5160
- 1 NAVAL SURFACE WARFARE CTR M E LACY CODE B02 17320 DAHLGREN RD DAHLGREN VA 22448
- 1 NAVAL WARFARE SURFACE CTR TECH LIBRARY CODE 323 17320 DAHLGREN RD DAHLGREN VA 22448
- 4 DIR
 LLNL
 R CHRISTENSEN
 S DETERESA
 F MAGMESS
 M FINGER
 PO BOX 808
 LIVERMORE CA 94550

- 2 DIRECTOR
 LLNL
 F ADDESSIO MS B216
 J REPPA MS F668
 PO BOX 1633
 LOS ALAMOS NM 87545
- 3 UNITED DEFENSE LP
 4800 EAST RIVER DR
 P JANKE MS170
 T GIOVANETTI MS236
 B VAN WYK MS 389
 MINNEAPOLIS MN 55421-1498
- 4 DIRECTOR
 SANDIA NATIONAL LAB
 APPLIED MECHANICS DEPT
 DIV 8241
 W KAWAHARA
 K PERANO
 D DAWSON
 P NIELAN
 PO BOX 969
 LIVERMORE CA 94550-0096
- 1 BATTELLE C R HARGREAVES 505 KNIGHT AVE COLUMBUS OH 43201-2681
- PACIFIC NORTHWEST LAB
 M SMITH
 PO BOX 999
 RICHLAND WA 99352
- 1 LLNL M MURPHY PO BOX 808 L 282 LIVERMORE CA 94550
- 10 UNIV OF DELAWARE
 CTR FOR COMPOSITE MATERIALS
 J GILLESPIE
 201 SPENCER LAB
 NEWARK DE 19716

- 2 THE U OF TEXAS AT AUSTIN
 CTR ELECTROMECHANICS
 A WALLIS
 J KITZMILLER
 10100 BURNET RD
 AUSTIN TX 78758-4497
- 1 AAI CORPORATION T G STASTNY PO BOX 126 HUNT VALLEY MD 21030-0126
- 1 SAIC
 D DAKIN
 2200 POWELL ST STE 1090
 EMERYVILLE CA 94608
- 1 SAIC M PALMER 2109 AIR PARK RD S E ALBUQUERQUE NM 87106
- 1 SAIC R ACEBAL 1225 JOHNSON FERRY RD STE 100 MARIETTA GA 30068
- 1 SAIC
 G CHRYSSOMALLIS
 3800 W 80TH ST STE 1090
 BLOOMINGTON MN 55431
- 6 ALLIANT TECHSYSTEMS INC
 C CANDLAND
 R BECKER
 L LEE
 R LONG
 D KAMDAR
 G KASSUELKE
 600 2ND ST NE
 HOPKINS MN 55343-8367
- 1 CUSTOM ANALYTICAL ENGR SYS INC A ALEXANDER 13000 TENSOR LANE NE FLINTSTONE MD 21530

- 1 NOESIS INC 1110 N GLEBE RD STE 250 ARLINGTON VA 22201-4795
- 1 ARROW TECH ASSO 1233 SHELBURNE RD STE D 8 SOUTH BURLINGTON VT 05403-7700
- 5 GEN CORP AEROJET
 D PILLASCH
 T COULTER
 C FLYNN
 D RUBAREZUL
 M GREINER
 1100 WEST HOLLYVALE ST
 AZUSA CA 91702-0296
- 1 NIST
 STRUCTURE & MECHANICS GRP
 POLYMER DIV POLYMERS RM A209
 G MCKENNA
 GAITHERSBURG MD 20899
- 1 GENERAL DYNAMICS LAND SYSTEM DIVISION D BARTLE PO BOX 1901 WARREN MI 48090
- 4 INSTITUTE FOR ADVANCED
 TECHNOLOGY
 H FAIR
 P SULLIVAN
 W REINECKE
 I MCNAB
 4030 2 W BRAKER LN
 AUSTIN TX 78759
- 1 PM ADVANCED CONCEPTS LORAL VOUGHT SYSTEMS J TAYLOR MS WT 21 PO BOX 650003 DALLAS TX 76265-0003

- 2 UNITED DEFENSE LP
 P PARA
 G THOMASA
 1107 COLEMAN AVE BOX 367
 SAN JOSE CA 95103
- 1 MARINE CORPS SYSTEMS CMD PM GROUND WPNS COL R OWEN 2083 BARNETT AVE STE 315 QUANTICO VA 22134-5000
- 1 OFFICE OF NAVAL RES J KELLY 800 NORTH QUINCEY ST ARLINGTON VA 22217-5000
- 1 NAVSEE OJRI
 G CAMPONESCHI
 2351 JEFFERSON DAVIS HWY
 ARLINGTON VA 22242-5160
- 1 USAF WL MLS O L A HAKIM 5525 BAILEY LOOP 243E MCCLELLAN AFB CA 55552
- 1 NASA LANGLEY
 J MASTERS MS 389
 HAMPTON VA 23662-5225
- 2 FAA TECH CTR
 D OPLINGER AAR 431
 P SHYPRYKEVICH AAR 431
 ATLANTIC CITY NJ 08405
- 1 NASA LANGLEY RC CC POE MS 188E NEWPORT NEWS VA 23608
- 1 USAF
 WL MLBC
 E SHINN
 2941 PST STE 1
 WRIGHT PATTERSON AFB OH
 45433-7750

- 4 NIST
 POLYMERS DIVISION
 R PARNAS
 J DUNKERS
 M VANLANDINGHAM
 D HUNSTON
 GAITHERSBURG MD 20899
- OAK RIDGE NATIONAL LAB A WERESZCZAK BLDG 4515 MS 6069 PO BOX 2008 OAKRIDGE TN 37831-6064
- 1 COMMANDER
 USA ARDEC
 INDUSTRIAL ECOLOGY CTR
 T SACHAR
 BLDG 172
 PICATINNY ARSENAL NJ
 07806-5000
- 1 COMMANDER
 USA ATCOM
 AVIATION APPLIED TECH DIR
 J SCHUCK
 FT EUSTIS VA 23604
- 1 COMMANDER
 USA ARDEC
 AMSTA AR SRE
 D YEE
 PICATINNY ARSENAL NJ
 07806-5000
- 7 COMMANDER
 USA ARDEC
 AMSTA AR CCH B
 B KONRAD
 E RIVERA
 G EUSTICE
 S PATEL
 G WAGNECZ
 R SAYER
 F CHANG
 BLDG 65
 PICATINNY ARSENAL NJ
 07806-5000

NO. OF NO. OF **COPIES ORGANIZATION** COPIES ORGANIZATION **COMMANDER** 1 AMSRL WM BD **USA ARDEC** S WILKERSON AMSTA AR QAC R FIFER T D RIGOGLIOSO **B FORCH** BLDG 354 M829E3 IPT R PESCE RODRIGUEZ PICATINNY ARSENAL NJ **BRICE** 07806-5000 AMSRL WM D VIECHNICKI 5 DIRECTOR **G HAGNAUER** USARL J MCCAULEY AMSRL WM MB AMSRL WM MA A ABRAHAMIAN R SHUFORD M BERMAN S MCKNIGHT A FRYDMAN L GHIORSE TLI AMSRL WM MB W MCINTOSH V HARIK E SZYMANSKI J SANDS 2800 POWDER MILL RD W DRYSDALE ADELPHI MD 20783 J BENDER T BLANAS T BOGETTI ABERDEEN PROVING GROUND R BOSSOLI L BURTON 67 **DIR USARL** S CORNELISON AMSRL CI P DEHMER AMSRL CI C R DOOLEY W STUREK **B FINK** AMSRL CI CB **G GAZONAS RKASTE** S GHIORSE AMSRL CI S D GRANVILLE A MARK D HOPKINS AMSRL SL B C HOPPEL AMSRL SL BA **D HENRY** AMSRL SL BE **RKASTE D BELY M LEADORE** AMSRL WM B R LIEB A HORST **E RIGAS E SCHMIDT** D SPAGNUOLO AMSRL WM BE W SPURGEON **G WREN** J TZENG

CLEVERITT

AMSRL WM BC

P PLOSTINS

DLYON

J NEWILL

D KOOKER

AMSRL WM MC

AMSRL WM MD

J BEATTY

AMSRL WM T

B BURNS

WROY

ABERDEEN PROVING GROUND (CONT)

AMSRL WM TA

W GILLICH

E RAPACKI

T HAVEL

AMSRL WM TC

R COATES

W DE ROSSET

AMSRL WM TD

W BRUCHEY

A D GUPTA

AMSRL WM BB

H ROGERS

AMSRL WM BA

F BRANDON

W D AMICO

AMSRL WM BR

J BORNSTEIN

AMSRL WM TE

A NIILER

AMSRL WM BF

JLACETERA

REPORT DO	Form Approved OMB No. 0704-0188			
Public reporting burden for this collection of informa gathering and maintaining the data needed, and com collection of information, including suggestions for the	npleting and reviewing the collection of information	s Services. Directorate for Information (Operations and	d Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4307 1. AGENCY USE ONLY (Leave blank)	2. and to the Office of Management and Budget. Pa 2. REPORT DATE	3. REPORT TYPE AND	L WASHINGTON	50 EV30V
1. AGENOT OOL OHET Jacobs and and	October 1999	Final, Jan 98 - Feb		
4. TITLE AND SUBTITLE	000000. 1777			NG NUMBERS
Accelerated Adhesive Curing for	AH42	<u>)</u>		
6. AUTHOR(S) Steven H. McKnight, Bruce K. John W. Gillespie Jr.*				
7. PERFORMING ORGANIZATION NAM	ME(S) AND ADDRESS(ES)			DRMING ORGANIZATION RT NUMBER
U.S. Army Research Laboratory ATTN: AMSRL-WM-MA Aberdeen Proving Ground, MD			TR-2103	
9. SPONSORING/MONITORING AGEN	CY NAMES(S) AND ADDRESS(ES)			SORING/MONITORING CY REPORT NUMBER
11. SUPPLEMENTARY NOTES * University of Delaware, News	rark, DE 19716	· .		·
12a. DISTRIBUTION/AVAILABILITY ST	ATEMENT		12b. DIS1	TRIBUTION CODE
Approved for public release; di	istribution is unlimited.			
			<u> </u>	
13. ABSTRACT (Maximum 200 words)			•	لم مسئلة
A methodology for accelerated Cure kinetics of the adhesive parameters and cure cycles. approximately 15 min for 98% at the bondline for lap shear specific contents.	were studied by thermochemic Increasing the cure temper of cure. Induction-heating techniques	cal analysis, and degreen to 100°C reduced to 100°C.	ee of cure ced the	re was related to processing cure time from 16 hr to
	i v			
14. SUBJECT TERMS				15. NUMBER OF PAGES
induction heating, adhesives, a	ŀ	26		
degree of cure	ļ	16. PRICE CODE		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIE		UL

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts. 1. ARL Report Number/Author <u>ARL-TR-2103 (McKnight)</u> Date of Report <u>October 1999</u> 2. Date Report Received _____ 3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) ______ 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) Organization E-mail Name Name **CURRENT ADDRESS** Street or P.O. Box No. City, State, Zip Code 7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below. Organization Name OLD **ADDRESS** Street or P.O. Box No. City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)